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Abstract  
 
Advances in sequencing technology are resulting in the rapid emergence of large 
numbers of complete genome sequences. High-throughput annotation and metabolic 
modeling of these genomes is now a reality. The high-throughput reconstruction and 
analysis of genome-scale transcriptional regulatory networks represent the next 
frontier in microbial bioinformatics. The fruition of this next frontier will depend on the 
integration of numerous data sources relating to mechanisms, components, and 
behavior of the transcriptional regulatory machinery, as well as the integration of the 
regulatory machinery into genome-scale cellular models. Here we review existing 
repositories for different types of transcriptional regulatory data, including expression 
data, transcription factor data, and binding site locations; and we explore how these 
data are being used for the reconstruction of new regulatory networks. From 



template network-based methods to de novo reverse engineering from expression 
data, we discuss how regulatory networks can be reconstructed and integrated with 
metabolic models to improve model predictions and performance. We also explore 
the impact these integrated models can have in simulating phenotypes, optimizing 
the production of compounds of interest, or paving the way to a whole-cell model.  
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Introduction  
 
Systems biology has provided numerous tools for modeling biological systems [1], 
many of which depend on the reconstruction of genome-scale metabolic models 
(GSM). These models now exist for a growing number of organisms, including 
prokaryotic, archaeal, and eukaryotic species [2]. With the advent of next-generation 
sequencing, the development of GSMs has become routine [2, 3], and many steps 
involved in the reconstruction and optimization of draft GSMs have been automated 
[4]. Algorithms and methods for GSM reconstruction have been reviewed in detail 
elsewhere [5-7]. 
 
However, nearly all existing GSMs fail to account for the impact of gene expression 
regulation on metabolic activity. In order to capture the impact of regulation on the 
behavior of an organism, a GSM must integrate some abstraction of regulatory 
mechanisms, which include the activity of RNA polymerase, transcription factors 
(TFs), promoters, transcription factor binding sites (TFBS), and sigma factors. Sigma 
factors allow the recognition of the enzyme by the promoter region, enabling 
transcription to begin. TFs bind to specific TFBSs in the promoter region and can act 
as activators, repressors, or both (dual regulators). In eukaryotes, TFs are able to 
perform other tasks affecting regulation, such as chromatin-modifying activities [8]. 
Other elements have been identified as taking part in the control of transcription 
regulation in bacteria, such as riboswitches [9], RNA swiches [10], antisense RNA 
[11], or microRNAs [12].  Here we focus on regulation by transcription factors, a 
mechanism illustrated in Fig. 1. Also displayed are some of the technologies, tools, 
and resources necessary for reconstructing transcriptional regulatory networks. 
 
 
*** Insert figure 1 around here *** 
 
The integration of these regulatory mechanisms in GSMs requires methods for the 
reconstruction and analysis of transcriptional regulatory networks (TRNs). Once a 
regulatory model has been constructed for an organism, it can be integrated with 
GSMs to improve predictive accuracy and reveal new biological insights. For 
example, some cellular processes exhibit a dominance of regulatory mechanisms, 
affecting their behavior and leading to incorrect predictions when only metabolism is 
accounted for [13]. The first genome-scale integrated metabolic and regulatory model 
for E. coli [14] revealed that regulation significantly affects growth phenotype 
predictions, and these predictions improved with the addition of regulatory 
constraints. Simultaneously, the study of TRNs has unveiled novel interactions; in 
Salmonella enterica, 14 regulators were identified that affect the same genes leading 
to a systemic infection [15]. Similar studies led to the discovery of novel regulatory 
mechanisms in Saccharomyces cerevisiae [16]. 
 



Here, we review the reconstruction of TRNs and their integration with metabolic 
models. First, we explore the data available for TRN reconstruction, covering the 
most prominent databases of expression data and repositories of TF/TFBS data. 
Next, we examine how data availability triggered the development of a variety of TRN 
inference methods, including reverse engineering from expression datasets [17-21], 
network inference from TFBS site data [22-24], and knowledge-based template 
methods [25]. 
 
The integration of regulatory and metabolic networks for predictive modeling is 
possible only with the development of integrated phenotype simulation methods. The 
most widely used approach for simulating GSMs is flux balance analysis (FBA) [26]. 
To account for regulatory information, FBA was expanded with new methodologies, 
including rFBA [13] and SR-FBA [27]. We review these FBA-based methodologies, 
as well as other approaches that allow for a characterization of alternative cellular 
states [28] and for the integration of omics data [29, 30]. 
 
Regulation data for TRN reconstruction – From standards and 
technologies to databases 
 
The development of microarray technologies gave rise to a revolution in biomedical 
research [31], also bringing new problems such as quality control of experiments [32] 
and selection of an appropriate level of detail [33]. To address these issues, the 
Functional Genomics Data Society (FGED) launched a proposal to standardize the 
publishing and sharing of microarray data (MIAME) [34]. The majority of the 
community adopted the proposal, requiring authors to follow the MIAME guidelines. 
Publishers also required authors to store data [35] in either NCBI’s Gene Expression 
Omnibus (GEO) [36] or EBI’s ArrayExpress [37], the major public gene expression 
data repositories, both MIAME compliant. 
 
These databases integrate data from a variety of technologies that can help 
determine regulatory interactions, although expression profiling and genome binding 
and occupancy studies have become the most prevalent. Expression profiling 
techniques vary from the traditional array oligonucleotide hybridization technology for 
measuring gene expression level to mRNA quantification methodologies, such as 
serial analysis of gene expression (SAGE) [38, 39] or reverse transcriptase PCR 
(RT-PCR). Genome binding and occupancy experiments have the advantage of 
identifying the spots corresponding to DNA-protein binding targets. Chromatin 
immunoprecipitation with array hybridization (ChIP-chip) [40, 41] is used to overcome 
limitations of common expression profiling. Other ChIP technologies have also been 
developed in combination with different expression techniques such as SAGE (ChIP-
SAGE [42]) to achieve a particular level of detail, depending on the organism and 
tissue studied [43]. With the development of next-generation sequencing 
technologies, ChIP-Seq [44] and RNA-Seq emerged [45, 46]. ChIP-Seq enables 
whole-genome ChIP assays, while RNA-Seq provides a capacity for direct 
measurement of mRNA, small RNA, and noncoding RNA abundances [47]. ChIP 
methods have been widely used to collect expression data from E. coli [48-50]; and, 
more recently, RNA-Seq methods have been adjusted for studying bacterial 
transcriptomes [51, 52]. RNA-Seq has been also successfully used to detect 
transcription start sites [53] that can be used for regulon inference. 
 
Data available for TRN inference can be categorized into two major groups: (i) 
databases of gene expression data (including genome binding experimental data), 
and (ii) databases of TF and TFBS. Table 1 shows the most notable databases of the 
former group.  



 
*** Insert Table 1 around here *** 
 
We surveyed GEO, as the major expression database, gathering statistics on the 
type of studies conducted, availability of data, quantification of bacterial data, and the 
most represented microbes (Fig. 2). These statistics clearly indicate that most of the 
current data are from expression profiling, with 18,498 experimental series (85%). 
Although next-generation sequencing technologies were introduced recently [54], we 
can already see a change in the types of experiments being performed (Fig. 2b). 
Examining the organisms for which expression data are available, we find that only 
7% of datasets are from bacteria (Fig. 2c), with Escherichia coli being the most 
represented prokaryote (Fig. 2d). 
 
*** Insert Figure 2 around here **** 
 
Table 1 also includes other notable databases, from which we highlight the Many 
Microbe Microarrays Database (M3D) [55] currently holding around 2,000 
microarrays for Escherichia coli, Saccharomyces cerevisiae, and Shewanella 
oneidensis. The data available are all from Affymetrix single channel microarrays, 
allowing a uniform normalization procedure and higher-quality data. The E. coli data 
have already been applied for TRN inference [56]. 
 
*** Insert Figure 3 around here *** 
 
Figure 3 shows the discrepancy between the number of sequenced genomes and 
the number of genomes for which any type of expression data exists. In this study, 
we cluster bacterial genomes available in the PubSEED [57] (a large repository of 
genomes and annotations) at the taxonomical level of family. The set of 20 bacterial 
families associated with expression data in GEO are shown in the phylogenetic tree. 
On average, 16.2% of the 3,493 PubSEED genomes that fall into these families have 
expression data linked to them. Expression data are available for 55% of the 
genomes in the Gammaproteobacteria family, demonstrating the extensive amount 
of data available for this taxonomic clade. In contrast, more than half of the bacterial 
phyla have expression data for less than 10% of their species, revealing that 
numerous phylogenetically distinct clusters of microbes have little gene expression 
experimentally characterized. 
 
*** Insert Table 2 around here *** 
 
Repositories with regulatory interactions also hold valuable information. Table 2 
shows the most comprehensive resources available for prokaryotes. Organism-
specific databases are available for well-known organisms such as E. coli, B. 
subtillis, and M. tuberculosis, including a comprehensive collection of regulatory 
information. Among those, RegulonDB is the most comprehensive resource for 
regulatory interactions data of any single organism (E. coli). In its latest release, 
genetic sensory response units are introduced to better represent the biology of gene 
regulation [58], trying to capture all the phenomena involved in regulation, from the 
initial signal to gene response. Another major resource for E. coli data is EcoCyc 
[59], integrating RegulonDB and curated data from over 21,000 publications and 
TRN descriptions that include genes, ligands, and regulators with their targets. 
DBTBS [60] is the major resource for B. subtillis regulatory data.  
 
Less comprehensive databases present fewer types of different regulatory 
information (sometimes only TFBS predictions or TF information) but cover a wide 
range of bacteria (Table 2). Notable examples are ODB [61], which stores known 



operon data for about 10,000 operons in 56 organisms and putative operons for over 
1000 genomes; RegTransBase [62], which collects regulatory data from the 
literature; and RegPrecise [63], a repository of manually curated regulons that 
provides tools for regulon propagation. 

 
Reconstruction of TRNs can use different types of data, and the accurate selection of 
data/database(s) for the method of choice is paramount in the reconstruction 
process. Organism-specific databases are particularly useful for reverse engineering 
methodologies as training datasets and essential for validation. Methodologies based 
on comparative genomics approaches make good use of less comprehensive 
databases but cover a wider range of organisms. 
 
TRN Reconstruction – From template networks and inference algorithms 
to integration with GSMs  
 
TRN reconstruction aims to make sense of gene expression and binding site data by 
revealing the interactions between the different elements of the cell’s regulatory 
machinery. Different methodologies have been proposed for TRN inference. 
However, there is no consensus for classification in the literature. Some reviews 
classify methods as bottom-up and top-down [64], others focus on inference from a 
specific type of data such as gene expression [65], while others present methods and 
computational tools [66]. Here, we review and categorize different methodologies 
within two major types: genomics-driven and data-driven. The first uses comparative 
genomics approaches, while the second refers to de novo reverse engineering from 
expression data. Within the genomics-driven approaches, we present two 
methodologies: template network-based methods and TFBS data-based methods via 
prediction of cis–regulatory elements, including propagation from known regulons 
and ab initio regulon inference. The comparative genomics approaches are 
described in Fig. 4a and 4b; Fig. 4c describes data-driven methods from expression 
data. 

 
*** Insert Figure 4 around here **** 
 
Template network-based methods 
 
Template-based methods [67] rely on one or more well-characterized networks to 
serve as a starting point for the reconstruction. These methods exploit the 
conservation of prokaryotic gene networks [68-71] to reconstruct TRNs (Fig. 4a). 
Starting with a well-characterized network, a search for orthologous genes (e.g. 
using bidirectional best hits [72]) is conducted on the genome of interest. With the 
orthologous TFs and their targets noted on the target genome, random networks are 
generated from the template network to confer statistical strength to the new 
reconstructed interactions in the target genome, since this shows the significant 
trends. After this analysis, the new interactions on the target genome are 
reconstructed. This approach can be useful for propagation of TRNs to other strains 
of a model organism or to closely related organisms. 
 
This methodology presents some limitations, however. The first is intrinsic: the need 
for a high-quality template network derived for an organism that is phylogenetically 
close to the organism being studied. A long phylogenetic distance between the 
template and the target organisms can generate meaningless interactions; hence the 
choice of the template network is of paramount importance for the reconstruction. 
Another limitation is the scale of the network to be reconstructed; here our focus is 



genome-scale network reconstruction, and reconstructions on this scale depend on 
the availability of a template network that also exists at the genome scale. 
 
TFBSs data-based methods via prediction of cis – regulatory elements 
 
TRN reconstruction from binding site data can also be defined as a comparative 
genomics approach. Prior to the development of the first binding-site approaches, 
most methods relied almost entirely on functional information from expression data 
[19, 73]. The GRAM (Genetic Regulatory models) algorithm [74] was the first to 
combine the use of expression data and binding site data in a genomewide inference 
process, enabling the inclusion of information about physical interactions between 
regulatory genes and their targets. Other work focused on the conservation of the 
regulatory machinery across different organisms.  
 
Regulogger [75] was introduced to generate regulogs, or sets of genes that are co-
regulated and have their regulation processes conserved across several organisms. 
Using Staphylococcus aureus, regulogs were produced for well-known sets of genes 
and provide clues about the functions of unannotated genes. Studies of δ-
proteobacteria [23] revealed that very diverse species of proteobacteria have similar 
regulatory mechanisms.  
 
The principles behind this methodology were reviewed by Rodionov [76]. Figure 4b 
describes one of the two strategies proposed. The first step is to gather all available 
information related to TFs and TFBSs in a selected model organism. These data are 
then used as a training set for the TFBS model. The accuracy of the methodology is 
closely connected to the quality and quantity of sequences used for training. E. coli is 
usually used as a model species for gram-negative bacteria, and B. subtilis for gram-
positive bacteria. If the TFBSs corresponding to a particular TF are unknown, all 
genes regulated by the TF in the model species are identified, and then orthologs for 
these genes in closely related genomes are found. With a TFBS training set built by 
this process or experimentally determined (see Table 2), positional weight matrices 
(PWMs) are constructed for the collection of binding sites. Several algorithms are 
available that perform motif pattern recognition [77] to construct PWMs. One of the 
first algorithms developed for this task was AlignACE [78]. This algorithm was 
recently upgraded to W-AlignACE [79] incorporating a new learning approach [80] 
and showing increased accuracy in obtaining PWMs for gene sequences, gene 
expression data, and ChIP-chip data [79]. Using the PWMs, one can perform a 
genomewide search for putative TFBSs on the target genomes.  
 
This comparative-genomics-based approach requires a high-quality training set; 
using genomes that are not closely related can lead to generation of false positive 
TFBS predictions. Even for a set of closely related genomes, selecting a threshold 
for binding site detection can be difficult. The final step of the TFBS prediction 
involves the verification of site consistency. Early studies on E. coli and H. Influenzae 
regulon predictions showed conservation of co-regulated genes by orthologous TFs 
[81]. Based on this principle, a search is conducted for binding sites upstream from 
the operons regulated by each TF. If the site is conserved, the TFBS prediction is 
assumed to be correct. On the other hand, if matches to the predicted TFBS motif 
are found dispersed across the genome, the prediction is assumed to be a false 
positive. By accounting for changes in the operon structure, further consistency 
checks are possible. This method showed improved results in binding site detection 
in several studies such as nitrate and nitrite respiration in γ-Proteobacteria [82] and 
nitrogen metabolism in gram-positive bacteria [83]. 
 



These methodologies have been implemented in the RegPredict web resource [84], 
a state-of-the-art tool for TRN reconstruction with TFBS data. The webserver 
comprises a large set of comparative genomics tools available in two reconstruction 
frameworks; the first reconstructs regulons for known PWMs, and the second 
performs de novo regulon inference for unknown binding sites using analysis of 
regulon orthologues across closely related genomes. One of the novelties of 
RegPredict is the concept of CRONs (Clusters of co-Regulated Orthologous 
Operons) to facilitate and improve consistency check. This semi-automated 
approach provides the community with a more swift reconstruction, curation and 
storage of regulons. RegPredict was used for TRN reconstruction of the central 
metabolism of the Shewanella genus [85], for the analysis of the regulation of the 
hexunorate metabolism in Gammaproteobatceria [86], and for the elucidation of 
control mechanisms for proteobacterial central carbon metabolism by the HexR 
regulator [87]. FITBAR [88] is another web tool for prokaryotic regulon prediction that 
aims to fill the gap of the lack of statistical comparison for calculating the significance 
of the predictions.  
 
Techniques also exist for predicting TFBSs when the available regulatory information 
is not sufficient for regulon-based approaches. Phylogenetic footprinting [89] 
identifies highly conserved untranslated regions (UTRs) upstream from the genes of 
interest, since these are prime regulatory site candidates. An orthologous search for 
these regions is performed across closely related genomes; candidate binding sites 
are identified; and these sites are used to perform a regulatory motif search across 
all analyzed genomes. This technique successfully identified the FabR regulon in E. 
coli and regulon members in several cyanobacteria genomes [90]. Another approach 
has been described as subsystem oriented [76] based on the hypothesis that one TF 
regulates the genes on the same metabolic pathway. A search for orthologous genes 
on the same metabolic pathway of closely related genomes is conducted. Using the 
orthologous operons from the same subsystem, one can perform a motif search to 
build the PWM and search for TFBS. Concepts of this approach were also 
implemented in RegPredict with the introduction of the SEED subsystems [57] for 
regulon reconstruction and curation.  
 
De novo reverse engineering 
 
As gene expression data became available through microarray technologies, 
development began on methods for inference of regulatory networks from expression 
data [91]. Early reviews describe several mathematical formalisms such as Bayesian 
networks, Boolean networks, and differential equations to represent regulatory 
networks [92], together with appropriate algorithms to support network inference.  
 
The development of these methodologies led to the creation of the DREAM 
(Dialogue for Reverse Engineering Assessments and Methods) project in 2007 [93], 
bringing together experts from different areas and aiming to provide tools to enable 
the unbiased evaluation of various methods [94], hosting annual challenges. The 
lessons gained from the results obtained in those challenges have provided 
improved methods for network inference [95]. Each year different methods are 
ranked as top performers on specific sub challenges that differ in either the type of 
data or network size. 
 
Past reviews have categorized reverse engineering network inference methods 
according to (i) mathematical modeling approach [65, 96], (ii) module-based or direct 
inference methods [64, 97], and (iii) unsupervised and (semi)-supervised 
methodologies [64, 98, 99]. 



In the first category [65, 100], the differential equation (ODEs)-based [101, 102], 
mutual information-based [103, 104], and Bayesian network-based methods [105, 
106] are the most popular approaches. Other notable approaches are based on 
Boolean networks [107], neural networks [108, 109], correlation analysis [110], and 
relevance networks [111]. 
 
The second category divides methods into those based on a modular view of 
regulatory networks that infer regulatory programs for sets of co-expressed genes 
and those able to infer the regulatory behavior of individual genes (direct inference) 
[79]. Module-based inference is inspired by evidence that regulatory networks exhibit 
a modular structure of co-expressed genes [112, 113], using a separate algorithm for 
the module inference step, typically based on clustering or biclustering algorithms, 
such as cMonkey [114]. Direct inference methods search for single interactions 
between targets and their regulators [56, 115] (Fig. 5). A comparison between 
representative methods of both approaches showed that none can be defined as the 
best solution [97]: the module-based method LeMoNe [116, 117] is able to retrieve 
more efficiently targets for regulators with a high number of targets, and the direct-
inference method CLR [56] is preferable for detecting regulators with one or few 
targets. Thus, these methods can be seen as complementary when handling 
genome-scale regulatory model reconstruction. 
 
*** Insert Figure 5 around here *** 
 
The third category divides methods into supervised [118, 119] and unsupervised 
[120, 121]. The former use a training set of known interactions creating classification 
problems (e.g., to infer whether a given gene is regulated by a transcription factor) 
(Fig. 5). Some supervised methods are known as semi-supervised [122, 123]. 
Supervised methods have shown to provide more accurate predictions than 
unsupervised methods [124], with successes in expanding the compendium of TF-
gene interactions in E. coli [122]. At the same time, when inferring interactions for an 
organism that is not well known, the lack of a proper training set can lead to a better 
performance by unsupervised methods.  
 
A detailed review of the mathematical formalisms and detailed inference algorithms 
is out of the scope of this review. From the overwhelming number of methods 
available, we chose to briefly describe 10 methods, including the most widely used, 
the most recent [64], and the best performing from the DREAM challenges [94, 95, 
125-127]. We focus our review on methods that produce genome-scale regulatory 
network reconstructions in the form of regulatory models that may be integrated with 
GSMs. While no method currently exists that completely satisfies these criteria, 
several algorithms, given in Table 3, can provide important results in the route to 
achieve the goal of fully integrated genome-scale models. 
 
*** Insert Table 3 around here *** 
 
ARACNE [115] is one of the most widely used methods, first applied to infer 
regulatory interactions on human B cells [128]. Also, it has shown capacity for 
genome-wide inference in bacterial species such as Streptomyces coelicor [129]. 
CLR (context likelihood of relatedness) introduced the use of data from different 
experimental conditions for the same organism to infer regulatory interactions and 
enabled the identification of over 700 novel interactions in E. coli [56]. Being one of 
the most cited methods with an ability to predict edges in the RegulonDB, CLR is the 
method of choice for regulatory interactions studies [130]. It was recently used to 
unveil virulence factors in Salmonella [131]. A newer algorithm based on CLR, called 
SA-CRL (synergy augmented-CLR) [132], was the best-performing method in the 



DREAM2 genome-scale inference challenge, exploiting the concept of synergy 
among multiple interacting genes [133], where a pair of genes is used to infer the 
expression of a third to increase prediction accuracy. 
 
The Inferelator [134] was applied for genomewide reconstruction of Halobacterium. A 
mixed approach combining this method with CLR was one of the top performers in 
the DREAM3 in silico network challenge [135], using a modified version of CLR to 
compute mutual information values that are subsequently used by Inferelator to 
produce an ODE model. This method, called tlCLR (time-lagged CLR), takes 
advantage of two types of data: steady-state data from knockout experiments and 
time series gene expression data. Another method using different types of data was 
introduced by Yip et al. [136] gathering steady-state data from a noise model and 
time series data from an ODE model; this method was the top performer of the 
DREAM3 in silico challenge. Most algorithms in Table 3 can use steady-state or time 
series data, thus showing the benefits of integrating both types of data.  
 
DREAM5 featured a genome-scale network inference challenge with a large dataset 
from a compendium of microarray data for E. coli comprising 805 chips, 334 TFs, 
and 4,511 genes. Large datasets were also provided for network inference on 
Saccharomyces cerevisiae and Staphylococcus aureus. GENIE3 (GEne Network 
Inference with Ensemble of trees) [119] uses tree-based methods [137] decomposing 
the inference problem of p size into p distinct regression models. This method was 
the best performer overall and the top performer in the in silico network. GENIE3 had 
already been the best performer in the DREAM4 in silico inference for the 100-gene-
multifactorial subchallenge, where only multifactorial data were provided, and 
showed equal capacity in successfully inferring networks from real data when 
compared was widely used methods such as CLR and ARACNE [119].  
   
Several methods integrate multiple data types (e.g., inference from expression, 
binding site data) to facilitate TRN reconstruction. SEREND (SEmi- supervised 
REgulatory Network Discoverer) [138] uses a semi-supervised and iterative 
approach to unveil regulatory interactions. SEREND depends on a curated set of TF-
gene interactions and TF-gene motif scores as a training set to construct a logistic 
regression model. The known predictions are then expanded and the predictions 
validated with ChiP-chip and time-series expression data. This approach was used to 
better predict and to give new insights into the factors involved in activation and 
repression in the aerobic/anaerobic regulation mechanism in E. coli [138].  

 
GPS (Gene promoter Scan) [139] is also able to integrate other types of data; but as 
a module-based method, it follows a different approach. GPS is a machine learning 
method that builds promoter models and their relationships computed from a dataset. 
In the next step, characterized profiles (groups of promoters) are generated. The 
best profiles are used as candidates for genomewide predictions. Studies with E. coli 
and S. enterica using GPS unveiled previously unknown interactions and novel 
members of the PhoP protein controlled regulon [139].  

 
DISTILLER [140] is another method that exploits the concept of regulation modularity 
integrating other sources of data for network inference. This framework can be 
applied to any organism and incorporate motif and ChiP-Chip data. The integrated 
approach was used to study the FNR regulon in E. coli identifying novel predictions 
that were experimentally validated. These studies provided insights on modularity 
dynamics pointing to the existence of polycistronic transcription [141].  
 
A search for the best inference method usually turns to benchmarking studies; but 
the choice of benchmark datasets presents a problem, with different studies showing 



very sparse results [142, 143]. Lessons from all the DREAM challenges show that 
there is no individual best method. Results from community predictions, a 
combination of several reverse engineering methods, are closer to a state-of-art/best 
method, outperforming results from individual algorithms. The determination of error 
profiles enables the advantages and limitations of each inference method to be 
assessed in order to determine which method is “the best” for a specific inference 
problem.  
 
The methods described above show recent advances, providing a good summary of 
the huge number of approaches that have been put forward. However, the underlying 
problem is complex, given the large search spaces involved and the still restricted 
availability of data that leads to an undetermined problem where many solutions can 
explain the data equally well. Hence, most of the methods rely on heuristic methods 
using different strategies to simplify the problem. The most important simplification is 
to reduce the search for a network or model explaining the data, with a huge number 
of possible interactions between the different entities involved, to the search of 
individual interactions or to small clusters or modules. This allows in some cases for 
distinct methods to be integrated to better support the results and, in the most 
elaborate methods, being followed by steps of determining regulatory programs 
based on these individual interactions. 
 
Phenotype simulation by integrated metabolic and regulatory networks  
 
The simulation of phenotype from genotype using reconstructed models has been 
one of the major goals and challenges of systems biology [144-146]. Early work on 
the integration of metabolic networks with gene expression data revealed that some 
cellular phenotypes cannot be described by the metabolic flux distribution alone 
[147]. Whole-cell modeling is required to capture many phenotypes, and while this 
has been one of the great challenges of the century [148], integration of regulatory 
networks is one key milestone toward achieving this goal [149]. Significant advances 
have been made in the reconstruction of metabolic, regulatory, and signaling 
networks [150, 151], as well as in the integrated simulation of these three network 
types [152, 153]. Here, we focus on the potential for the simulation of integrated 
metabolic and regulatory networks and the challenges that arise in this integrated 
approach [154].  
 
*** Insert Figure 6 around here *** 
 
Several mathematical formalisms have been applied to model different types of 
biochemical networks (e.g., Boolean and Bayesian networks, constraints-based 
optimizations, ODEs). The many types of approaches for integrated network 
reconstruction and analysis have been reviewed recently [66, 155, 156]. Here, we 
focus on the methods that can be applied at genome scale, mainly stoichiometric 
models using the constraints-based approach [157, 158]. 
 
Constraints-based stoichiometric models do not account for intercellular dynamics. 
Instead, they assume a pseudo-steady-state for the cell, in which metabolite 
accumulation does not occur. This is described mathematically by a set of linear 
constraints on the flux through each metabolic reaction, defined by the mass balance 
for each internal metabolite (Fig. 6):  

S . v = 0, 
where S represents the stoichiometric matrix and v the vector of fluxes through all 
metabolic reactions. The set of fluxes that satisfy these constraints define the 
feasible space for reaction fluxes (Fig. 5). Constraints can be imposed on reaction 



reversibility and directionality (v > 0), on enzyme capacity (v < vmax), and on nutrient 
availability and uptake. 
 
Extensions have been made to these basic mass-balance and flux boundary 
constraints to capture the additional constraints imposed by regulatory interactions. 
Figure 7 shows existing methods for analysis and simulation of integrated metabolic 
and regulatory networks. Global network analysis methods such as extreme pathway 
analysis [159] were developed to analyze specific pathway properties, such as length 
and redundancy. These methods were used successfully to characterize changes in 
the solution space with the addition of regulatory constraints [28]. 
 
*** Insert Figure 7 around here *** 
 
The flux balance analysis approach uses linear programming to identify the specific 
flux distributions that satisfy problem constraints and best reflect the state of the cell 
or represent target states for metabolic engineering [160, 161]. FBA was expanded 
to account for regulatory information with the introduction of rFBA (regulatory FBA) 
[13], which uses a Boolean logic formalism to define additional constraints specifying 
which genes in the network are ON or OFF, based on specified stimuli (e.g., stress). 
This approach was successfully applied with the first genome-scale integrated model 
of metabolism and regulation in E. coli, resulting in the correction of several 
phenotype predictions compared with the use of mass balance and flux boundary 
constraints alone [14]. However, this approach requires the integrated model to be 
initialized at a relevant state for the regulatory components of the system. The 
Boolean regulatory constraints are then applied to determine how the state of the 
regulatory components will change over time in response to stimuli. Selection of a 
relevant initial condition for the model remains a challenge for this methodology, 
since many equally consistent states exist for a set of stimuli, with equally valid 
associated flux distributions. 
 
To address some of the limitations of rFBA, SR-FBA (Steady-State Regulatory FBA) 
[162] was introduced, differing from rFBA in that it accounts for metabolic and 
regulatory constraints in a single step and quantifies the impact of these constraints 
on the flux distribution. This methodology enables the rapid exploration of feasible 
combined regulatory and metabolic states, and it rapidly identifies constraints that 
are internally inconsistent, preventing their simultaneous enforcement in a single 
steady-state. Yet, therein lies the substantial limitation of this approach, since 
inconsistent regulatory constraints often arise, because regulatory mechanisms exist 
to manage transitions between states of the cell in response to stimuli. Some of 
these transitions involve a cascade of intermediate unstable states that cannot be 
captured by the SR-FBA formalism. The constraints that manage these cascade 
transitions are not designed to be simultaneously enforced with all other constraints 
in the cell, meaning they appear to be internally inconsistent. 
 
The quest for a whole-cell model led to the development of methods that also 
integrate signaling networks. Two methods have been proposed: iFBA (integrated 
FBA [152]) and idFBA (integrated dynamic FBA) [153]. iFBA is an expansion of the 
rFBA approach that aims to integrate signaling models, when available, for an 
organism or pathway being studied. An rFBA model for the central metabolism of E. 
coli [163] was combined with an ODE kinetic model for the phosphotransferase 
system, showing improved predictions compared with both rFBA and ODE models. 
The novelty of idFBA is the incorporation of slow and fast reactions in the 
stoichiometric framework. Slow reactions are incorporated directly into the 
stoichiometric matrix with a time delay; fast reactions rely on the pseudo steady-state 
assumption of the FBA approach. idFBA was applied to the analysis of yeast 



metabolism [164], demonstrating an approximation for the time-course prediction of 
time-delayed reactions, with the advantage of requiring fewer measured parameters 
than with full kinetic modeling.  
 
Before methods such as rFBA, srFBA, iFBA, or idFBA can be applied, TRNs must be 
translated into Boolean network models that connect external stimuli to internal 
metabolic reaction activity. The PROM (Probabilistic Regulation of Metabolism) [165] 
approach was introduced to avoid the translation to Boolean constraints by enabling 
the generation of integrated models directly from high-throughput TRN data. PROM 
aims to circumvent the Boolean approaches that would consider a gene as either ON 
or OFF, with results outperforming rFBA. The differences in the predictions are 
attributed to the Boolean formalism of rFBA, which establishes a set of “rigid” flux 
restrictions, where PROM presents a more continuous flux restriction. The 
reconstruction of an integrated model for M. tuberculosis showed a potential use of 
PROM for drug target prediction. PROM can be seen as the closest methodology for 
semi-automated reconstruction of integrated metabolic and regulatory networks. 
 
Transcriptional controlled FBA (tFBA) [166] is another method that uses experimental 
expression data for the assessment of the regulatory state. Like PROM, tFBA aims to 
surpass the rigid ON/OFF gene states of a purely Boolean formulation by introducing 
the concept of more relaxed up/down constraints. As more experimental data are 
available, the level of expression of a gene can be observed to change under specific 
conditions without being entirely shut off. This method shows how the addition of 
large quantities of expression data can provide a way to improve FBA-based 
methods in the absence of kinetic parameters for metabolites and reactions. 
 
Discussion  
 
In this survey, we begin with an overview of the data currently available for TRN 
reconstruction, revealing the limited number of datasets available for bacterial 
organisms, despite the massive amount of existing microarray data (Figs. 1 and 2). 
We demonstrate through a phylogenetic analysis of the available expression data 
that large numbers of diverse organisms for which reference genomes are now 
available have never been examined using transcriptomic techniques. In order to 
fully understand bacterial regulation, expression data must be collected under a 
variety of conditions for as many diverse genomes as possible. We also show how 
next-generation sequencing technologies are beginning to dominate the latest 
submissions to the gene expression data repositories. While these new technologies 
enable the community to collect more data at a faster and cheaper price, they face 
the familiar problem of data standardization. Recent studies show how widespread 
batch effects, such as laboratory conditions, technicians, and reagent brands lead to 
incorrect analysis of data and different results across different laboratories [167].  
 
As for data relating to the regulons, transcription factors, binding sites, and stimuli 
that comprise the TRN itself, comprehensive databases are available for a few 
specific organisms. Multiorganism databases do exist, but these typically focus on 
one type of regulatory information, lacking the information needed to fully capture the 
regulatory effects. The latest version of RegulonDB makes an effort in the direction of 
representing the complete regulation by introducing genetic sensory response units. 
 
Next, we examine how the methods applied for the reconstruction of TRN have 
progressed over the past decade. As the number of available reference genomes 
with expression data has increased, we see a corresponding increase in the number 
and power of approaches based on comparative genomics. With the increasing 
amounts of consistent high-quality expression data, we are also seeing increasing 



success with methods based on the reverse engineering of TRN from expression 
data. As these two examples amply demonstrate, the best method for TRN 
reconstruction depends on the amount and type of data available. Although the size 
of the desired TRN to be inferred is also an important factor, we suggest that 
genome-scale networks will always be desired in the near future. We also note the 
success of community efforts that combine the advantages of several reconstruction 
approaches, showing that hybrid approaches are the most successful given the 
present knowledge, where the complementary nature of the approaches helps to 
improve accuracy.  
 
In the final portion of our review, we examine several approaches for the 
reconstruction and analysis of integrated metabolic and regulatory models. These 
approaches have been successfully applied to improve our ability to accurately 
predict phenotype from genotype, to explore the impact of regulation on the 
metabolic pathways, and to simulate regulatory interactions that are continuous 
rather than discrete. Industrial successes in fields such as bioethanol production 
show the potential of current models and importance of improving these models [168, 
169]. Adding a “layer” of regulation can help unveil and predict unobserved 
phenotypes. Strain optimization has been one of the main objectives of metabolic 
engineering, and the potential for improvements integrating regulatory information 
recently led to the development of methods that account for this type of information 
[170, 171]. Yet, we still lack a full understanding of the interplay between regulation 
and metabolism. Several studies have shown how major transcriptional changes are 
not always followed by changes in the metabolic flux [172, 173]. 
 
Several unknowns remain in the analysis and reconstruction of integrated 
biochemical networks, mostly because we do not yet possess a full understanding of 
regulation. For example, some efforts have been made to develop methods to 
account for metabolic activity effects regulated by post-transcriptional effects [174]. 
Methods such as PROM and tFBA allow the relaxation of constraints to try to 
account for regulatory effects. Even with transcriptional regulation, there are 
biological effects that these network models fail to reproduce. For example, 
chromosome structure can physically constrain bacterial transcriptional regulation 
[175]. Epigenetics of transcriptional regulation are also difficult to account for, and 
some chemical marks have been described to be linked to this type of mechanism in 
bacteria [176].  
 
Some of the methods described rely on basic assumptions such as that the same TF 
regulates orthologous genes or that the same TF may regulate genes in the same 
pathway. These assumptions may fail to represent reality, however, since TRNs 
show considerable plasticity in their structure. Orthologous regulators have been 
shown to control different pathways across different species [177], and global 
regulators have been shown to regulate different mechanisms [178]. Incorporation of 
models in evolutionary processes such as duplication and horizontal gene transfer 
has been proposed to deal with TRN plasticity [76, 179]. TRN also showed 
stochasticity [180], which can be an issue, especially when these networks are 
modeled by using a Boolean formalism that further propagates these stochastic 
effects [181].  
 
Most recently Karr et al. [182] introduced the first whole-cell model for Mycoplasma 
genitalium. Integrating 28 submodels, the authors managed to validate the model 
across a wide set of experimental data, pointing out its potential for novel biological 
discovery in M. genitalium. It must be noted however, that M. genitalium is the 
smallest bacterial genome, with only 525 genes. Thus, while this methodology does 
represent a large step forward toward the goal of true whole-cell models, much more 



work must be done before similar models can be constructed for larger and more 
complex organisms.  
 
As the pursuit of a whole-cell model continues, we expect novel regulatory 
interactions will be discovered in our drive to build a full understating of cell 
regulatory machinery.  
 
Key Points 
 
1.) Large numbers of phylogeny for which genome sequences are available still lack 
any gene expression data. 
2.) Repositories of data on TRN tend to be comprehensive organism specific or 
narrowly focused multiorganism. 
3.) The best methods for reconstruction of TRN from data depend on the size of the 
desired network and the types/amount of data available; but, in general, hybrid 
methods that combine many approaches produce the best results. 
4.) Methods for integrating regulatory and metabolic models must include both 
steady state and dynamic components, and they must accommodate more than just 
Boolean regulation in order to fully capture the behavior of transcriptional regulation. 
5.) Integration of regulatory constraints in genome-scale metabolic models results in 
substantial improvements in accuracy of phenotype predictions, particularly since 
many phenotypes cannot be fully explained without accounting for regulation. Yet, 
some regulatory mechanisms still exist that are poorly understood and require further 
study. 
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Figure Legends 
 
Figure 1 –Technologies, tools, and resources for transcriptional regulatory network 
modeling and reconstruction. 
 
Figure 2- Survey of the GEO database. (a) Types of expression profiling studies on 
the database [183]. (b) Number of series of experiments available from next-
generation sequencing technologies [183]. (c) Percentage of data from bacteria in 
the entire database: from a total of 28,150 series of experiments only 2,196 
represent bacterial organisms. (d) Most-represented bacteria on GEO. The 
organisms presented have at least a minimum of 43 series of experiments. Data for 
(c) and (d) were obtained with GEO tools [184] in April 2012. 
 
Figure 3 – Comparison of bacterial genomes with expression data in GEO versus 
genomes with complete DNA sequences in the PubSEED [57]. The 20 bacterial 
families that contain genomes with expression data in GEO are arranged in a 
topological tree. For each family, the most abundantly sampled species in the 
PubSEED was picked to represent that family, and the alignment of their 16S 
sequences was used to reconstruct the bacterial family tree. The color coding of the 
tree nodes denotes the phyla they belong to. Most phyla contain only one family, with 
the exception of Cyanobacteria (3 families), Bacteroidetes (4 families), and 
Firmicutes (3 families). The last two phyla are especially overrepresented in terms of 
both sequenced genomes and expression data. The numbers on the right of each 
tree node denote the number of genomes with GEO expression data (566 in total) 
and the number of genomes present in the PubSEED (3,493 in total). Archea 
organisms were removed from this study since we aim to survey only bacterial 
genomes. In the horizontal bar plot, we show the fraction of each bacterial family for 
which expression data is available (in dark red). The tree was designed with the 
Interactive Tree of Life Tool [185, 186]. 
 
Figure 4 – TRN reconstruction methodologies. (a) Template network based 
methods. b) TFBS data based via regulatory cis elements. (c) De novo reverse 
engineering. 
 
Figure 5 – Network inference methods classification. (a) Network node Module 
Based vs Direct Inference. (b) Supervised vs unsupervised. Supervised methods 
require a training set of previous known interactions. 
 
Figure 6 - Stoichiometric modeling. The metabolic network is used to construct the 
stoichiometric matrix using mass balances of the metabolites. The constraints-based 
approach is used to impose constraints to the stoichiometric model. S.v = 0 – pseudo 
steady-state assumption; v > 0 – reversibility constraint; v < vmax – capacity 
constraint. 
 
Figure 7 – Pathway-based and constraints-based methods for the analysis and 
simulation of integrated metabolic and regulatory networks. FBA (flux balance 
analysis; rFBA (regulatory FBA); SR-FBA (steady-state regulatory FBA); idFBA 
(integrated dynamic FBA); iFBA (integrated FBA); PROM (Probabilistic Regulation of 
Metabolism); IOMA (Integrative Omics- Metabolic Analysis); tFBA (transcriptional 
controlled FBA). 
 
 



Table 1 – Gene expression repositories with bacterial transcriptional data. 
Database Main Features 
GEO [36] NCBI’s database for expression data. Supports multiple expression 

studies platforms for all organisms. Browsing tools available. 
ArrayExpress [37] EBI’s database for expression data. Data submitted by users and 

imported from GEO. Advanced queries and ontology-driven searches. 
M3D [55] Data uniformly normalized from Affymetrix microarrays for Escherichia 

coli, Saccharomyces cerevisiae and Shewanella oneidensis. 
SMD [187] Partially public database with data from around 60 organisms. 

Escherichia coli, Mycobacterium tuberculosis and Streptomyces 
coelicor are among the most represented microbes. Data analysis 
framework embedded.  

COLOMBOS [188] Cross-platform expression compendia for E. coli, B. subtilis, and S. 
enterica subspecies serovar Typhimurium. Provides tools for 
expression analysis and extraction of relevant information. 

	  
 
Table 2 – Databases with notable bacterial transcriptional data. 
Database Organism(s) Main Features 
Organism specific   

DBTBS [60]  B. subtillis 
Compendium of regulatory data with 
promoters, TFs, TFBS, motifs and regulated 
operons 

RegulonDB [58]    E. coli 
Compendium of regulatory data,  promoters, 
TFs, TFBS, transcription units, operons and 
regulatory network interactions. 

EcoCyc [59] E. coli 
Comprehensive database with gene 
products, transcriptional, post-transcriptional 
data and operon organization 

DPInteract [189] E. coli DNA binding proteins and binding site data. 
MTBRegList [190] M. tuberculosis. TFBS and regulatory motifs 
Organism class/family   
CoryneRegNet [191] Corynebacteria TF and regulatory networks 
cTFbase [192] Cyanobacteria Putative TFs 
TractorDB [193]  Gamma-

proteobacteria 
TFBS predictions 

MycoRegNet [194]  Mycobacteria TF and regulatory networks 
Non-organism specific   
ExtraTrain [195] Bacteria and Archea Transcriptional data and extragenic regions 
DBD [196]  

Bacteria 

TF predictions 

RegTransBase [62] Regulatory interactions from literature and 
TFBS 

PRODORIC [197] TFs, TFBSs, regulon lists, promoters, 
expression profiles 

sRNAMap [198]  Small noncoding RNAs and regulators 
ODB [61]  Known and putative operons 
RegPrecise [63]  Regulon database 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
Table 3 – Methods for reverse engineering of gene regulatory networks from 
expression data. 
      

  Inference 
Approach 

Semi / 
Supervised  

Algorithm Modeling Approach DI* MB** Yes No 
ARACNE [115] 

Mutual Information (MI) 
X   X 

CLR [56]  X   X 
SA-CRL [132] X   X 
tlCLR [135]                    + MI  X  X 
Inferelator [134] ODE Model  X  X 
Yip et al. [136]                     + Noise Model X   X 
GENIE3 [119] Regression tress X  X  
SEREND [138] Logistic regression X  X  
GPS [139] Fuzzy Clustering  X  X 
DISTILLER [140] Association rules (itemsets)  X  X 
*DI – Direct Inference | **MB – Module-Based 
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